RUS
ENG
Full version
JOURNALS
// Zapiski Nauchnykh Seminarov POMI
// Archive
Zap. Nauchn. Sem. LOMI,
1990
Volume 183,
Pages
142–154
(Mi znsl4800)
This article is cited in
13
papers
Minima of decomposable forms of degree
$n$
in
$n$
variables for
$n\geqslant3$
B. F. Skubenko
Abstract:
It is proved the theorem: if for any
$X\in\mathbb{Z}^n$
(
$X\ne0$
) be
$|F(x)|\geqslant\mu>0$
for factorable form
$F(X)$
of degree
$n$
in
$n$
variables then
$F$
is equal up to a constant to a integral form provided that
$n\geqslant3$
.
UDC:
511.9
Fulltext:
PDF file (671 kB)
Cited by
English version:
Journal of Soviet Mathematics, 1992,
62
:4,
2928–2935
Bibliographic databases:
©
Steklov Math. Inst. of RAS
, 2025