RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. LOMI, 1990 Volume 183, Pages 142–154 (Mi znsl4800)

This article is cited in 13 papers

Minima of decomposable forms of degree $n$ in $n$ variables for $n\geqslant3$

B. F. Skubenko


Abstract: It is proved the theorem: if for any $X\in\mathbb{Z}^n$ ($X\ne0$) be $|F(x)|\geqslant\mu>0$ for factorable form $F(X)$ of degree $n$ in $n$ variables then $F$ is equal up to a constant to a integral form provided that $n\geqslant3$.

UDC: 511.9


 English version:
Journal of Soviet Mathematics, 1992, 62:4, 2928–2935

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025