RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. LOMI, 1991 Volume 187, Pages 88–109 (Mi znsl4864)

This article is cited in 14 papers

Weaknonlinear solutions of the $\mathbb{P}_1^2$ equation

A. A. Kapaev


Abstract: On the base of the isomonodromy deformation method the ($\mathrm{P}_1^2$)
$$ \frac1{10}y^{(4)}+y''y+\frac12(y')^2+y^3=x $$
which is the first higher equation in the hierarchy of the first Painlevé equation is studied. The asymptotics of weaknonlinear solutions for $x\to\infty$ along the Stokes rays and asymptotics of real regular solutions for real $x\to\pm\infty$ are constructed.

UDC: 517.9


 English version:
Journal of Mathematical Sciences, 1995, 73:4, 468–481

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024