RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. LOMI, 1991 Volume 188, Pages 159–177 (Mi znsl4875)

This article is cited in 1 paper

On a non-stationary problem in a dihedral angle. I

E. V. Frolova


Abstract: We investigate a boundary value problem for heat equation in the dihedral angle $D_\theta\subset \mathbb{R}^n$ with Neumann condition on one side of the angle and the boundary condition
$$ x\frac{\partial u}{\partial t}-\frac{\partial u}{\partial x_2}+h\frac{\partial u}{\partial x_1}+\sum_{j=1}^3b_j\frac{\partial u}{\partial x_j}\bigm|_{\Gamma_{OT}}=\varphi_0, $$
(where $x>0$, $h\leqslant0$, $b_j$ are real constants) on another side. Unique solvability in weighted Sobolev spaces is proved.

UDC: 517.9


 English version:
Journal of Mathematical Sciences, 1994, 70:3, 1828–1840

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024