RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. LOMI, 1991 Volume 190, Pages 34–80 (Mi znsl4890)

This article is cited in 10 papers

Spectral analysis of biorthogonal expansions generated by Muckenhoupt weights

G. M. Gubreev


Abstract: Any Muckenhoupt $A_2$-weight $\omega^2$ on a special curve $\mathcal{\gamma}_\rho$ ($\rho\geqslant1/2$) generates a function $y_{\rho,\omega}(\lambda,t)$, which coincides with the exponential $\exp\{i\lambda t\}$ if $\rho=1$, $\omega^2(z)\equiv1$.
In this paper the geometric approach of B. S. Pavlov is used to obtain criteria for a family of functions $\{y_{\rho,\omega}(\lambda_k,t): \lambda_k\in\Lambda\}$ to be an unconditional basis in the space $L_2(0,\sigma)$. The analytic machinery of the paper generalizes some results of M. M. Dzhrbashyan (for a power weight) for the case of an arbitrary Muckenhoupt $A_2$-weight.

UDC: 517.54


 English version:
Journal of Mathematical Sciences, 1994, 71:1, 2192–2221

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025