RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. LOMI, 1984 Volume 138, Pages 33–34 (Mi znsl4898)

The Hardy estimates in $\mathbb R^n$ and absence of positive eigenvalues for Schrodinger operators with complex potentials

A. F. Vakulenko


Abstract: Using the following estimit
$$ \int_{\mathbb R^n}|x|^{2p+2}|\Delta\varphi+\varphi|^2\,dx\geqslant C(p)\int_{\mathbb R^n}|x|^{2p}|\varphi|^2\,dx $$
with $C(p)\to\infty$ as $p\to\infty$, we prove the absence of $L_2$-solution of
$$ \Delta\varphi+v\varphi=\varphi $$
with $|v(x)|\leqslant C(1+|x|)^{-1-\varepsilon}$.

UDC: 517.9



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025