Abstract:
Using the following estimit
$$
\int_{\mathbb R^n}|x|^{2p+2}|\Delta\varphi+\varphi|^2\,dx\geqslant C(p)\int_{\mathbb R^n}|x|^{2p}|\varphi|^2\,dx
$$
with $C(p)\to\infty$ as $p\to\infty$, we prove the absence of $L_2$-solution of
$$
\Delta\varphi+v\varphi=\varphi
$$
with $|v(x)|\leqslant C(1+|x|)^{-1-\varepsilon}$.