RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. LOMI, 1984 Volume 138, Pages 35–64 (Mi znsl4899)

Nonlinear nonuniformly elliptic second-order equations

A. V. Ivanov


Abstract: A priori estimates of the first and second derivatives for solutions of nonuniformly elliptic equations of the form $\mathcal F(x, u, \mathcal Du, \mathcal D^2u)=0$ without the suggesting on the convexity $\mathcal F(x, p, z, r)$ in $r$ are investigated. These estimates permit to generalize the results of Krylov, Evans and Trudinger on the classical solvability of the Diriclet problem for fully nonlinear, uniformly elliptic, convex in $\mathcal D^2u$ equations to a more broader classes of nonlinear equations.

UDC: 514.946



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024