RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. LOMI, 1985 Volume 143, Pages 156–161 (Mi znsl4922)

Nielsen zeta-function

V. B. Pilyugina, A. L. Fel'shtyn


Abstract: In this paper we introduce a new zeta-function in the theory of dynamical systems. We find a sharp bound for the radius of convergence of the Nielsen zeta-function in terms of the topological entropy of the map. It follows from this that the Nielsen zeta-function has a positive radius of convergence. We prove that for an orientation-preserving homeomorphism of a compact surface the Nielsen zeta-function is either a rational function or the radical of a rational function. We calculate the Nielsen zeta-function for maps of circles, spheres, tori, protective spaces, for expanding maps of an orientable smooth compact manifold, for a homotopy periodic map of a connected compact polyhedron having no locally separating point.

UDC: 515.126.4


 English version:
Journal of Soviet Mathematics, 1987, 37:3, 1141–1144

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024