RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. LOMI, 1986 Volume 149, Pages 67–75 (Mi znsl4927)

A correction theorem and the dyadic space $H(1,\infty)$

S. V. Kislyakov


Abstract: It is proved that for every $L^\infty$-function $f$ and positive $\varepsilon$ there is a function $g$ whose partial sums of both Fourier and Walsh–Fourier series are uniformly bounded by $c(\log 1/\varepsilon)\|f\|_\infty$ and that satisfies $\operatorname{mes}\{f\ne g\}<\varepsilon$.

UDC: 542.62:90



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025