RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. LOMI, 1991 Volume 192, Pages 60–68 (Mi znsl4946)

Complexity of irreducibility testing for a system of linear ordinary differential equations

D. Yu. Grigor'ev


Abstract: Let a system ofdlinear ordinary differential equations of the first order $Y'=AY$ bå given, where $A$ is $n\times n$ matrix over a field $F(X)$, assume that the degree $\mathrm{deg}_X(A)<d$ and the size of any coefficient occurring in $A$ is at most $M$. The system $Y'=AY$ is called reducible if it is equivalent (over the field $\overline{F}(X)$) to a system $Y_1'=A_1Y_1$ with a matrix $A_1$ of the form
$$ A_1= \begin{pmatrix} A_{1,1}& 0\\ A_{2,1}& A_{2,2} \end{pmatrix}. $$
An algorithm is described for testing irreducibility of the system with the running time $\exp(M(d2^n)^{d2^{n}})$.

UDC: 518.5+512.46


 English version:
Journal of Mathematical Sciences, 1994, 70:4, 1881–1886

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024