RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. LOMI, 1991 Volume 192, Pages 149–162 (Mi znsl4950)

This article is cited in 9 papers

Computation of exponential integrals

A. I. Barvinok


Abstract: Let $P\subset\mathbb{R}^d$ be a convex full-dimensional polytope and $f:\mathbb{R}^d\mapsto\mathbb{R}$ be a linear function. The computational complexity of the integral $\int_P\exp\{f(x)\}d\,x$ is studied. It is shown that these integrals are subjected to certain non-trivial algebraic relations that makes it possible to design polynomial-time algorithms for some polytopes. Applications of exponential integrals to computation of volume and to non-linear programming are given.

UDC: 519.7+512.4


 English version:
Journal of Mathematical Sciences, 1994, 70:4, 1934–1943

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024