RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 1997 Volume 243, Pages 87–110 (Mi znsl496)

This article is cited in 5 papers

The regularity theory for $(m,l)$-Laplacian parabolic equation

A. V. Ivanov

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences

Abstract: We present results on regularity for generalized solutions of equations of the form
\begin{equation} u_t-\operatorname{div}\{|u|^l|\nabla u|^{m-l}\nabla u\}=0, \quad m>1, \quad l>1-m, \tag{1} \end{equation}
obtained recently by the author. We prove a local $L_\infty$ estimate for generalized solutions of this equation (1) under the following condition on the parameters $m$$l$:
\begin{equation} \frac{\sigma+1}{\sigma+2}>\frac1m-\frac1n, \quad \sigma=\frac l{m-1}, \quad m>1, \quad l>1-m. \tag{2} \end{equation}
This condition was found by the author is a previous paper (Zapiski Nauchnykh Seminarov POMI, vol. 221, 83–113 (1995)). It was shown there that this condition is necessary for local boundedness of a generalized solution.

UDC: 517.9

Received: 10.02.1996

Language: English


 English version:
Journal of Mathematical Sciences (New York), 2000, 99:1, 854–869

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024