RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. LOMI, 1991 Volume 195, Pages 14–18 (Mi znsl5021)

Absence of singularities of Gaussian beams in diffusion equation case

V. M. Babich


Abstract: The diffusion equation in the case of point source is considered:
$$ \varepsilon\frac1h\frac{\partial}{\partial x^i}\left(D^{ij}h\frac{\partial c}{\partial x^j}\right)-U^i\frac{\partial c}{\partial x^i}=-A\delta(x-x_0),\quad x=x^1,\dots,x^m,\quad x_0=x_0^1,\dots,x_0^m, $$
where $\varepsilon$ is a small parameter. The asymptotic expansion of $c$ reduces to Gaussian beam solution concentrated in a small neighbourhood of the curve $l$, which is solution of the system of differential equation:
$$ \frac{d}{d\,s}x^i=U^i,\quad x^i\mid_{s=0}=x_0^i. $$
Absence of singularities of Gaussian beams is proved.

UDC: 534.231.1, 517.226


 English version:
Journal of Soviet Mathematics, 1992, 62:6, 3058–3061

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024