RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. LOMI, 1992 Volume 197, Pages 87–119 (Mi znsl5062)

This article is cited in 5 papers

On some way of the approximation of solutions of initial boundary value problems for Navier–Stokes equations

O. A. Ladyzhenskaya, G. A. Seregin


Abstract: Solutions of the initial boundary value problem for Navier–Stokes equations are approximated by solutions of the initial boundary value problem
\begin{gather*} \partial_t u(t)+u_k(t)\partial_ku(t)-\nu\Delta u(t)-\frac1\varepsilon\nabla\mathrm{div}\,u(t)+\frac12u(t)\mathrm{div}\,u(t)=f(t),\\ u(0)=u_0\text{ in }\Omega;\quad u(t)=0\text{ on }\partial\Omega. \end{gather*}
We study proximity of solutions of these problems in suitable norms and also proximity of their minimal global $B$-attractors.

UDC: 517.9


 English version:
Journal of Mathematical Sciences, 1995, 75:6, 2038–2057

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025