RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 1992 Volume 199, Pages 91–113 (Mi znsl5082)

This article is cited in 2 papers

Nonlocal problems for some class nonlinear dissipative Sobolev type equations

A. A. Kotsiolis, A. P. Oskolkov, R. D. Shadiev


Abstract: Let $H_i$, $i=0,1,2,3$ are Hilbert spaces:
$$ H_3\subset H_2\subset H_1\subset H_0, \qquad{(1)} $$
and imbeddings are compact. Consider in $H_2$ nonlinear abstract equation
$$ \frac{du}{dt}=Au+K(u)+F(t),\quad t\in\mathbb{R}^+, \qquad{(7)} $$
and suppose that for operators $A$ and $K(u)$ and external force $F(t)$ the assumptions (8)–(12) are fulfilled.
In the paper two nonlocal problems for the equation (7)–(12) are studied: The examples of nonlinear dissipative Sobolev type equations (2)–(6) which are reduced to the abstract nonlinear equation (7)–(11) are given:

UDC: 517.94


 English version:
Journal of Mathematical Sciences, 1995, 77:2, 3076–3089

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024