RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 1992 Volume 200, Pages 132–138 (Mi znsl5099)

This article is cited in 4 papers

Theorems about traces and multipliers for functions from Lizorkin–Triebel spaces

Y. V. Netrusov


Abstract: We briefly outline the results. In section 2 we formulate results about multipliers in Besov and Lizorkin–Triebel spaces. In theorems 1 and 2 a description of spaces of multipliers for $FL_{p,\theta}^l$, $l>0$, $0<p\leqslant1$, and $F_{p,\theta}^l$, $l\in\mathrm{R}$, $0<p\leqslant1$, $p\leqslant\theta\leqslant\infty$, ig given (recall that the description of spaces of multipliers for space $BL_{1,1}^l=FL_{1,1}^l$ has been obtained by V. G. Mazya (see [2])). In theorem 3 a description of multipliers in space $BL_{p,\infty}^l$, $l>0$, $0<p\leqslant1$ and some information about multipliers for spaces $B_{p,\infty}^l$, $l\in\mathrm{R}$, $0<p\leqslant1$, are given.
In section 3 we formulate two results about traces of functions from spaces of Lizorkin–Triebel type. In theorem 4 we give a discription of such subsets $A\subset\mathrm{R}^n$ that trace of space $FL_{p,\theta}^l$, $0<p\leqslant1$, $l>0$, on set $A$ is a quasibanach lattice. In theorem 5 we indicate a class of measures $\nu$ such that trace of space of Lizorkin–Triebel type on measure $\nu$ is the Lebesgue space $L_p(\nu)$, $0<p<\infty$. In particular, it follows from theorem 5 that trace of $W^l_{L_{p,1}}(\mathrm{R}^n)$ (Sobolev space in metric of Lorentz space $L_{p,1}$ on $m$-dimensional plane $\pi$ ($m\in \mathrm{N}$, $l=(n-m)/p\in \mathrm{N}$, $1<p<\infty$) is equal to $L_p(\mu_m)$, where $\mu_m$ is the Lebesgue measure on the plane $\pi$.

UDC: 517.518


 English version:
Journal of Mathematical Sciences, 1995, 77:3, 3221–3224

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025