RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. LOMI, 1986 Volume 153, Pages 160–172 (Mi znsl5141)

A weighted tessellation of Voronoi with Poisson fields of centroids

B. P. Harlamov


Abstract: A weighted tessellation of Voronoi generated by a system of $n$ Poisson fields of centroids is considered. A composition and boundary fields of the structure are investigated. The intensity of the boundary field between grains of types $i$ and $j$ $(1\leqslant i\leqslant j\leqslant n)$ is proved to be
$$ q_{ij}=36^{1/3}\pi^{1/3}\Gamma\left(\frac23\right)p_ip_j\frac{(\alpha_i+\alpha_j)^3-|\alpha_i-\alpha_j|^3}{9\alpha_i\alpha_jc} $$
where $p_i$ is a volume part, $\alpha_i>0$ is a weight (for comparison of distances) of the $i$-th component, $c$ is a scale. Formulae for boundary field intensities in flat and line sections are obtained $q_{ij}^{(2)}=\frac\pi4q_{ij}$, $q_{ij}^{(1)}=\frac12q_{ij}$. Estimations for parameters $p_i$ and $\alpha_i$ dependent on line observations are proposed.

UDC: 519.2



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024