RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. LOMI, 1986 Volume 156, Pages 69–72 (Mi znsl5177)

This article is cited in 1 paper

On a solvability in general on $(0,\infty)$ a main initial boundary-value problem for two-dimentional equations of Oldroyd fluid

N. A. Karazeeva


Abstract: For the system
$$\begin{cases} \frac{\partial\bar v}{\partial t}+v_k\frac{\partial\bar v}{\partial x_k}-\mu\Delta\bar v-\mathbb K\Delta\bar v+\operatorname{grad} p=\bar f(x,t),\\ \operatorname{div}\bar v=0,\;\mathbb K\bar v=\int_0^tK(t-\tau)v(\tau)\,d\tau,\;K=\sum c_je^{-\zeta_jt},\;c_j,\zeta_j>0 \end{cases}$$
described two-dimentional motion of Oldroyd liquiditis proved a global solvability for $t\in(0,\infty)$.

UDC: 517.9



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024