Abstract:
For the system
$$\begin{cases}
\frac{\partial\bar v}{\partial t}+v_k\frac{\partial\bar v}{\partial x_k}-\mu\Delta\bar v-\mathbb K\Delta\bar v+\operatorname{grad} p=\bar f(x,t),\\
\operatorname{div}\bar v=0,\;\mathbb K\bar v=\int_0^tK(t-\tau)v(\tau)\,d\tau,\;K=\sum c_je^{-\zeta_jt},\;c_j,\zeta_j>0
\end{cases}$$
described two-dimentional motion of Oldroyd liquiditis proved a global solvability for $t\in(0,\infty)$.