RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. LOMI, 1987 Volume 157, Pages 45–54 (Mi znsl5191)

On peak sets for Hölder classes (a counterexample to E. M. Dyn'kin's conjecture)

B. Jöricke


Abstract: We construct a peak set $E\subset\mathbb T$ for the analytic Hölder class $A_\alpha$ ($0<\alpha<1$) such that $\operatorname{dist}(\cdot,E)^{-\alpha}\notin L^1(\mathbb T)$.

UDC: 517.85



© Steklov Math. Inst. of RAS, 2024