RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. LOMI, 1987 Volume 157, Pages 165–172 (Mi znsl5215)

Short communications

Some analogues of von-Heumann's inequality for $J$-contractions

M. M. Malamud


Abstract: Let $J$ be a self-adjoint operator satisfying $J^2=I$. We prove that for any $J$-contraction $T$ (i. e. $T^*JT-J\leqslant0$) and any inner function $f$ holomorphic on the spectrum of $T$ the function $f(T)$ is a $J$-contraction too. It is also proved that for $J\ne\pm I$ only inner functions $f$ satisfy this property. We consider other analogues of von-Neumann's inequality.

UDC: 517.982.224



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024