RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. LOMI, 1987 Volume 157, Pages 175–177 (Mi znsl5217)

This article is cited in 1 paper

Short communications

The resolvent of a Toeplitz operator may have arbitrary growth

S. R. Treil'


Abstract: Fix an arbitrary sequence $\{\lambda_n\}$ in the unit disc such that $\lim_n\lambda_n=1$ and any sequence $\{A_n\}$ of positive reals. Then there exists a continuous real $u$ on the unit circle such that the Toeplitz operator $T_\varphi$ (on the Hardy class $H^2$) with symbol $\varphi=e^{iu}$ satisfies
$$ \|(T_\varphi-\lambda_nI)^{-1}\|>A_n $$


UDC: 517.98



© Steklov Math. Inst. of RAS, 2024