RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2012 Volume 401, Pages 53–70 (Mi znsl5225)

This article is cited in 1 paper

Sharp estimates of best approximations by deviations of Weierstrass-type integrals

O. L. Vinogradov

Saint-Petersburg State University, Saint-Petersburg, Russia

Abstract: We establish the estimates
$$ A_\sigma(f)_P\le KP(f-f*W), $$
where $W$ is a kernel of special type summable on $\mathbb R$ and $A_\sigma(f)_P$ is the best approximation (with respect to a seminorm $P$) of a function $f$ by entire functions of exponential type not greater than $\sigma$. For the uniform and the integral norm we find the least possible constant $K$. The estimates are obtained by linear methods of approximation.

Key words and phrases: best approximation, sharp constants, convolution, completely monotone functions.

UDC: 517.5

Received: 23.05.2012


 English version:
Journal of Mathematical Sciences (New York), 2013, 194:6, 628–638

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025