RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2012 Volume 401, Pages 71–81 (Mi znsl5226)

On control subspaces of minimal dimension

M. F. Gamal'

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences, St. Petersburg, Russia

Abstract: The quantity "$\operatorname{disc}$" for a (bounded linear) operator was introduced by N. K. Nikol'skii and V. I. Vasjunin, namely,
$$ \operatorname{disc}T=\sup_{E\in\mathcal R(T)}\min\{\dim E'\colon E'\subset E,\ E'\in\mathcal R(T)\}, $$
where $\mathcal R(T)$ is the family of all finite dimensional reproducing subspaces for an operator $T$. We give sufficient conditions on operators $T$ under which $\operatorname{disc}T=\infty$. In particular, we show that there exists an operator $T$ with $\operatorname{disc}T=\infty$ and such that $T$ can be represented in the form $T=T_1\oplus T_2$ with $\operatorname{disc}T_1=\operatorname{disc}T_2=1$.

Key words and phrases: normal operator, invariant subspaces.

UDC: 517.983.243

Received: 08.06.2012


 English version:
Journal of Mathematical Sciences (New York), 2013, 194:6, 639–644

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024