RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2012 Volume 401, Pages 144–171 (Mi znsl5231)

This article is cited in 4 papers

A criterion for approximability by harmonic functions in Lipschitz spaces

M. Ya. Mazalov

National Research University "Moscow Power Engineering Institute", Smolensk Branch, Smolensk, Russia

Abstract: Let $X$ be a compact subset of $\mathbb R^3$, $f$ be a function harmonic inside $X$, from Lipschitz space $C^\gamma(X)$, $0<\gamma<1$. A criterion for approximability of $f$ on $X$ in $C^\gamma(X)$ by functions harmonic on neighborhoods of $X$ is obtained in terms of Hausdorff content of order $1+\gamma$. The proof is completely constructive, and Vitushkin's scheme of singularities separation and approximation by parts is applied.

Key words and phrases: Lipschitz spaces, Harmonic functions, Hausdorff content, Vitushkin's scheme.

UDC: 517.518.8+517.956.2

Received: 03.06.2012


 English version:
Journal of Mathematical Sciences (New York), 2013, 194:6, 678–692

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025