RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2012 Volume 403, Pages 110–117 (Mi znsl5252)

This article is cited in 1 paper

On realizations of representations of the infinite symmetric group

N. I. Nessonov

B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine, Khar'kov, Ukraine

Abstract: Denote by $\mathbb N$ the set of positive integers $\{1,2,\dots\}$. Let $\mathfrak S_\mathbb X$ stand for the group of all finite permutations of the set $\mathbb X=-\mathbb N\cup\mathbb N$. Consider the subgroups
$$ \mathfrak S_\mathbb N=\{s\in\mathfrak S_\mathbb X\colon s(-k)=-k\text{ for all }k\in\mathbb N\} $$
and
$$\mathfrak D=\{s\in\mathfrak S_\mathbb X\colon -s(k)=s(-k)\text{ and }s(\mathbb N)=\mathbb N\}. $$
Given a spherical representation $\pi$ of the pair $(\mathfrak S_\mathbb N\cdot\mathfrak S_{-\mathbb N},\mathfrak D)$, we construct a spherical representation $\Pi$ of the pair $(\mathfrak S_\mathbb X,\mathfrak D)$ such that the restriction of $\Pi$ to the group $\mathfrak S_\mathbb N\cdot\mathfrak S_{-\mathbb N}$ coincides with $\pi$.

Key words and phrases: infinite symmetric group, spherical representation, factor representation, Thoma parameters.

UDC: 517.986.4

Received: 17.10.2012


 English version:
Journal of Mathematical Sciences (New York), 2013, 190:3, 468–471

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025