RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2012 Volume 404, Pages 18–60 (Mi znsl5258)

Sharp estimates of best approximations in terms of holomorphic functions of Weierstrass-type operators

O. L. Vinogradov

Saint-Petersburg State University, Saint-Petersburg, Russia

Abstract: We establish the estimates
$$ A_\sigma(f)_P\le KP\bigl(\Phi(\mathcal W)f\bigr), $$
where $W$ is a kernel of special type summable on $\mathbb R$, a function $\Phi$ is holomorphic in the neighborhood of the spectrum of $W$, $A_\sigma(f)_P$ is the best approximation of a function $f$ by entire functions of exponential type not greater than $\sigma$, with respect to seminorm $P$. In some cases for the uniform and the integral norm we find the least possible constant $K$. The estimates are obtained by linear methods of approximation.

Key words and phrases: best approximation, sharp constants, convolution, completely monotone functions.

UDC: 517.5

Received: 05.05.2012


 English version:
Journal of Mathematical Sciences (New York), 2013, 193:1, 8–31

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025