RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2012 Volume 404, Pages 222–232 (Mi znsl5270)

This article is cited in 1 paper

On the distribution of fractional parts of polynomials of two variables

O. M. Fomenko

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences, St. Petersburg, Russia

Abstract: In the paper, upper bounds for sums of the form
$$ \underset{(n_1,n_2)\in\Omega}{\sum\sum}\psi(f(n_1,n_2)), $$
where $\psi(x)=x-[x]-\frac12$, $f(x,y)$ is a polynomial, $(n_1,n_2)\in\mathbb Z^2$, and $\Omega$ is a domain in $\mathbb R^2$, are obtained.
One of the upper bounds is of interest, particularly in connection with a lattice point problem considered in Theorem 2.

Key words and phrases: fractional parts of polynomials, lattice point problem.

UDC: 511.466+517.863

Received: 25.05.2012


 English version:
Journal of Mathematical Sciences (New York), 2013, 193:1, 129–135

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024