RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2012 Volume 404, Pages 233–247 (Mi znsl5271)

This article is cited in 2 papers

Extreme values of automorphic $L$-functions

O. M. Fomenko

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences, St. Petersburg, Russia

Abstract: We treat $\Omega$-theorems for some automorphic $L$-functons, and for the Rankin–Selberg $L$-function $L(s,f\times f)$ in particular.
For example, as $t$ tends to infinity,
$$ \log\Bigg|L\Biggl(\frac12+it,f\times f\Biggr)\Bigg|=\Omega_+\Biggl(\Biggl(\frac{\log t}{\log\log t}\Biggr)^{1/2}\Biggr), $$
and
$$ \log\big|L(\sigma_0+it,f\times f)\big|=\Omega_+\Biggl(\Biggl(\frac{\log t}{\log\log t}\Biggr)^{1-\sigma_0}\Biggr) $$
for fixed $\sigma_0\in\big(\frac12,1\big)$.

UDC: 511.466+517.863

Received: 30.08.2012


 English version:
Journal of Mathematical Sciences (New York), 2013, 193:1, 136–144

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024