RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2012 Volume 405, Pages 127–132 (Mi znsl5282)

Solving systems of linear equations with quasi-Toeplitz coefficient matrices

Kh. D. Ikramov

M. V. Lomonosov Moscow State University, Moscow, Russia

Abstract: A matrix $A$ is said to be quasi-Toeplitz if its entries in positions $(i,j)$, $(i-1,j)$, $(i,j-1)$, and $(i-1,j-1)$ obey a linear relation with coefficients that are independent of $i$ and $j$. It is shown that a system of linear equations with a quasi-Toeplitz $n\times n$ coefficient matrix can be solved in $O(n^2)$ arithmetic operations.

Key words and phrases: Toeplitz matrix, Pascal matrix, fast algorithms for solving Toeplitz systems.

UDC: 519.61

Received: 05.03.2012


 English version:
Journal of Mathematical Sciences (New York), 2013, 191:1, 69–71

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024