RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. LOMI, 1985 Volume 144, Pages 83–93 (Mi znsl5302)

A class of functions that are univalent in an annulus

E. G. Emel'yanov


Abstract: In the class $F_1$ of functions $f(\zeta)$, regular and univalent in the annulus $K=\{\rho<|\zeta|<1\}$ and satisfying the conditions $|f(\zeta)|<1$ and $f(\zeta)\ne0$ for $\zeta\in K$, $|f(\zeta)|=1$, $|\zeta|=1$, for $f(1)=1$, one finds the set of the values $D(A)=\{f(A):f\in K\}$ for an arbitrary fixed point $A\in K$. One makes use of the method of variations and certain facts from the theory of the moduli of families of curves.

UDC: 517.54



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024