RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. LOMI, 1985 Volume 147, Pages 196–198 (Mi znsl5351)

Perturbation of the self-adjoint operator by the subordinated symmetric operator.

S. A. Yakubov


Abstract: The following variant of the Rellich's theorem is proved. Let $A$, $B$ be the operators in some Hilbert space, $A=A^\ast$, $B\subset B^\ast$ and $D(B)\supset D(A)$. Let us suppose that, with some $\gamma>-1$, $(Bu,u)\geq\gamma(Au,u)$, $\forall u\in D(A)$. Then the operator $A+B$ is self-adjoint on the domain $D(A)$.

UDC: 539.101



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024