RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 1997 Volume 245, Pages 207–215 (Mi znsl541)

This article is cited in 5 papers

Integrable equations for the partition function of the six vertex model

A. G. Izergina, E. Karjalainenb, N. A. Kitaninca

a St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
b The Helsinki Institute of Physics, University of Helsinki
c Saint-Petersburg State University

Abstract: The partition function of the six vertex model with the domain wall boundary condition is considered in the homogeneous and inhomogeneous cases. The determinant representation allows to show that the partition function is a solution of the Toda equation in the homogeneous case and solution of the Hirota equation in the inhomogeneous case.

UDC: 530.145, 517.9

Received: 01.03.1996


 English version:
Journal of Mathematical Sciences (New York), 2000, 100:2, 2141–2146

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024