RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. LOMI, 1987 Volume 160, Pages 41–53 (Mi znsl5422)

A finiteness criterion for the number of rational points for twisted elliptic Weil curves

P. I. Guerzhoy, A. A. Panchishkin


Abstract: We consider the Weil elliptic curve $E/\mathbb{Q}$ and let $L(E,s)=\sum^\infty_{n=1}a(n)n^{-s}$ be its canonical $L$-series. Admitting the Birch–Swinnerton–Dyer conjecture and fixing the curve $E$, a criterion is given for the finiteness of the group $E_D(\mathbb{Q})$ for twisted elliptic curves $E_D$, defined by the condition
$$ L(E_D,s)=\sum^\infty_{n=1}\chi(n)a(n)n^{-s}, $$
where $D$ is the discriminant of the quadratic field and $\chi(D)$ is its quadratic character.

UDC: 511.515



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024