RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. LOMI, 1987 Volume 160, Page 262 (Mi znsl5443)

Modules for quadratic extensions of Dedekind rings

D. K. Faddeev


Abstract: Let $\sigma$ be a Dedekind ring, let $Q$ be a maximal order in a quadratic extension $K$ of the field $k$ of quotients of the ring $\sigma$, let $\Lambda$ be a subring of the ring $\sigma$, containing $\sigma$ and such that $\Lambda k=K$. It is proved that $\sigma/\Lambda$is a cyclic $\Lambda$-module. From here there follows, in particular, that each finitely generated torsion-free $\Lambda$-module is a direct sum of modules which are isomorphic to the ideals of ring $\Lambda$.

UDC: 519.48



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024