This article is cited in
1 paper
The Cauchy problem for a semilinear wave equation. I
L. V. Kapitanski
Abstract:
In this paper the Cauehy problem for the semilinear wave
equation on the torus
$\mathbb{T}^n$,
$n\geq3$:
\begin{equation}
\ddot{u}-\triangle u+f(u)=h,\qquad u|_{t=0}=\varphi,\qquad \dot{u}|_{t=0}=\varphi.
\tag{1}
\end{equation}
is studied. It is supposed that the function
$f:\mathbb{R}^1\longrightarrow\mathbb{R}^1$
continuous and there exist non negative constants
$A_1$,
$A_2$,
$A_3$
and
$a\geq1$ such that
$$
A_1+A_2s^2+\int^s_0f(\theta)d\theta\geq0,\qquad\forall s\in\mathbb{R}^1,
$$
$$
|f(s_1)-f(s_2)|\leq A_3(1+|s_1|^{a-1}+|s_2|^{a-1})|s_1-s_2|,\qquad\forall s_1,s_2\in\mathbb{R}^1.
$$
The main result of the present paper is the theorem: if
$1\leq a<(n+2)/(n-2)$, then for arbitrary data
$\varphi\in W_2^1(\mathbb{T}^n)$,
$\psi\in L_2(\mathbb{T}^n)$, $h\in L_{1,\operatorname{loc}}(\mathbb{R}^1\to L_2(\mathbb{T}^n))$ the problem
(I) has the global in time solution
$u$ with the following properties:
$u\in C_{\operatorname{loc}}(\mathbb{R}^1\to W_2^1(\mathbb{T}^n))$, $\dot{u}\in C_{\operatorname{loc}}(\mathbb{R}^1\to L_2(\mathbb{T}^n))$
and $u\in L_{q,\operatorname{loc}}(\mathbb{R}^1\to L_p(\mathbb{T}^n))$ for all
$p$,
$q$, satisfying
$$
\frac{n-3}{2n}<\frac1p<\frac{n-2}{2n},\qquad\frac1q=\frac{n-2}{2}-\frac np,
$$
and such a solution is unique.
UDC:
517.957