RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2012 Volume 408, Pages 102–114 (Mi znsl5495)

This article is cited in 1 paper

Nonsingular transformations of the symmetric Lévy processes

A. M. Vershika, N. V. Smorodinab

a St. Petersburg Department of the Steklov Mathematical Institute, St. Petersburg, Russia
b St. Petersburg State University, St. Petersburg, Russia

Abstract: In this paper we consider the group of transformations of the space of trajectories of the symmetric $\alpha$-stable Lévy laws with constant of stability $\alpha\in[0;2)$. For $\alpha=0$ the true analog of the stable Lévy process (so called $0$-stable process) is the $\gamma$-process, whose measure is quasi-invariant under the action of the group of multiplicators $\mathcal M\equiv\{M_a\colon a\geq0;\lg a\in L^1\}$ – the action of $M_a$ on trajectories $\omega(.)$ is $(M_a\omega)(t)=a(t)\omega(t)$. For each $\alpha<2$ an appropriate conjugacy takes the group $\mathcal M$ to a group $\mathcal M_\alpha$ of nonlinear transformations of the trajectories and the law of the corresponding stable process is quasi-invariant under those groups. We prove that when $\alpha=2$, the appropriate changing of the coordinates reduces the group of symmetries to the Cameron–Martin group of nonsingular translations of the trajectories of Wiener process.

Key words and phrases: Wiener measure, gamma-mesure, deformation of the symmery groups.

UDC: 519.2

Received: 08.10.2012


 English version:
Journal of Mathematical Sciences (New York), 2014, 199:2, 123–129

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024