RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2012 Volume 408, Pages 268–284 (Mi znsl5504)

This article is cited in 6 papers

Cyclic behavior of maxima in a hierarchical summation scheme

M. A. Lifshits

Saint-Petersburg State University, Saint-Petersburg, Russia

Abstract: Let i.i.d. symmetric Bernoulli random variables be associated to the edges of a binary tree having $n$ levels. To any leaf of the tree, we associate the sum of variables along the path connecting the leaf with the tree root. Let $M_n$ denote the maximum of all such sums. We prove that, as $n$ grows, the distributions of $M_n$ approach some helix in the space of distributions. Each element of this helix is an accumulation point for the shifts of distributions of $M_n$.

Key words and phrases: hierarchical summation scheme, maximum distribution, branching random walk, cyclic limit theorem.

UDC: 519.2

Received: 15.10.2012


 English version:
Journal of Mathematical Sciences (New York), 2014, 199:2, 215–224

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025