RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2012 Volume 408, Pages 303–322 (Mi znsl5507)

This article is cited in 12 papers

Measures and Dirichlet forms under the Gelfand transform

M. Hinzab, D. Kellehera, A. Teplyaeva

a Department of Mathematics, University of Connecticut, Storrs, CT, USA
b Mathematisches Institut, Friedrich-Schiller-Universität Jena, Germany

Abstract: Using the standard tools of Daniell–Stone integrals, Stone–Čech compactification and Gelfand transform, we show explicitly that any closed Dirichlet form defined on a measurable space can be transformed into a regular Dirichlet form on a locally compact space. This implies existence, on the Stone–Čech compactification, of the associated Hunt process. As an application, we show that for any separable resistance form in the sense of Kigami there exists an associated Markov process.

Key words and phrases: regular symmetric Dirichlet form, $C^*$-algebra, Daniell–Stone integral, Stone–Čech compactification, Gelfand transform, fractals.

UDC: 519.2

Received: 15.10.2012

Language: English


 English version:
Journal of Mathematical Sciences (New York), 2014, 199:2, 236–246

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024