RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2012 Volume 409, Pages 17–39 (Mi znsl5509)

This article is cited in 13 papers

Dynamical system with boundary control associated with symmetric semi-bounded operator

M. I. Belishev, M. N. Demchenko

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences, St. Petersburg, Russia

Abstract: Let $L_0$ be a closed densely defined symmetric semi-bounded operator with nonzero defect indexes in a separable Hilbert space $\mathcal H$. It determines a Green system $\{\mathcal H,\mathcal B;L_0,\Gamma_1,\Gamma_2\}$, where $\mathcal B$ is a Hilbert space, and $\Gamma_i\colon\mathcal H\to\mathcal B$ are the operators related through the Green formula
$$ (L_0^*u, v)_\mathcal H-(u,L_0^*v)_\mathcal H=(\Gamma_1u,\Gamma_2v)_\mathcal B-(\Gamma_2u,\Gamma_1v)_\mathcal B. $$
The boundary space $\mathcal B$ and boundary operators $\Gamma_i$ are chosen canonically in the framework of the Vishik theory.
With the Green system one associates a dynamical system with boundary control (DSBC)
\begin{align*} &u_{tt}+L_0^*u=0,&&u(t)\in\mathcal H,\,\,t>0,\\ &u|_{t=0}=u_t|_{t=0}=0,&&\\ &\Gamma_1u=f,&&f(t)\in\mathcal B,\,\,\,t\geqslant0. \end{align*}
We show that this system is controllable if and only if the operator $L_0$ is completely non-self-adjoint.
A version of the notion of a wave spectrum of $L_0$ is introduced. It is a topological space determined by $L_0$ and constructed from reachable sets of the DSBC.

Key words and phrases: dynamical system with boundary control, Green system, wave spectrum, reconstruction of manifolds.

UDC: 517.951

Received: 27.11.2012


 English version:
Journal of Mathematical Sciences (New York), 2013, 194:1, 8–20

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024