RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2012 Volume 409, Pages 80–106 (Mi znsl5513)

This article is cited in 9 papers

Asymptotic models of the blood flow in arterias and veins

V. A. Kozlova, S. A. Nazarovbc

a Department of Mathematics, Linkopings Universitet, Linkoping, Sweden
b Institute of Problems of Mechanical Engineering, Russian Academy of Sciences, St. Petersburg, Russia
c St. Petersburg State University, St. Petersburg, Russia

Abstract: Asymptotic analysis is applied for obtaining one-dimensional models of the blood flow in narrow, thin-walled, elastic vessels. The models for arteries and veins essentially distinguish from each other, and the reason for this is the structure of their walls as well as the operationing conditions. Although the obtained asymptotic models are simple, they explain various effects known in medical practice, in particular, describe the mechanism of vein-muscle pumping of blood.

Key words and phrases: modeling of thin-walled blood vessels, laminate elastic walls, Reinolds equation.

UDC: 517.958+539.3(5)+531.3-324

Received: 26.11.2012


 English version:
Journal of Mathematical Sciences (New York), 2013, 194:1, 44–57

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025