RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 1997 Volume 247, Pages 7–14 (Mi znsl559)

On a uniqueness theorem for functions with a sparse spectrum

A. B. Aleksandrov

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences

Abstract: We present an example of a set $\Lambda\in\mathbb Z$ satisfying the following two conditions:
1) there exists a nonzero positive singular measure on the unit circle $\mathbb T$ with spectrum in $\Lambda$;
2) if the spectrum of $f\in L^1(\mathbb T)$ is contained in $\Lambda$ and $f$ vanishes on a set of positive measure, then $f=0$.

UDC: 517.5

Received: 27.01.1997


 English version:
Journal of Mathematical Sciences (New York), 2000, 101:3, 3049–3052

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024