RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2012 Volume 400, Pages 158–165 (Mi znsl5615)

This article is cited in 8 papers

Haar multiresolution analysis and Haar bases on the ring of rational adeles

S. Evdokimov

St. Petersburg Department of the Steklov Mathematical Institute, St. Petersburg, Russia

Abstract: We construct a family of Haar multiresolution analyses in the Hilbert space $L^2(\mathbb A)$ where $\mathbb A$ is the ring of adeles over the field $\mathbb Q$ of rationals. The corresponding discrete group of translations and scaling function are respectively the group of additive translations by elements of $\mathbb Q$ embedded diagonally in $\mathbb A$ and the characteristic function of the standard fundamental domain of this group. As a consequence we come to a family of orthonormal wavelet bases in $L^2(\mathbb A)$. We observe that both the number of generating wavelet functions and the number of elementary dilations are infinite.

Key words and phrases: ring of adeles, multiresolution analysis, Haar bases, generating wavelet function.

UDC: 511.2+517.5

Received: 26.03.2012


 English version:
Journal of Mathematical Sciences (New York), 2013, 192:2, 215–219

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024