RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2012 Volume 400, Pages 166–188 (Mi znsl5616)

This article is cited in 9 papers

The Bruhat–Chevalley order on involutions of the hyperoctahedral group and combinatorics of $B$-orbit closures

M. V. Ignat'ev

Samara State University

Abstract: Let $G=\mathrm{Sp}_{2n}(\mathbb C)$ be the symplectic group, $B$ its Borel subgroup and $\Phi=C_n$ the root system of $G$. To each involution $\sigma$ in the Weyl group $W$ of $\Phi$ one can assign the orbit $\Omega_\sigma$ of the coadjoint action of $B$ on the dual space of the Lie algebra of the unipotent radical of $B$.
Let $\sigma,\tau$ be involutions in $W$. We prove that $\Omega_\sigma$ is contained in the closure of $\Omega_\tau$ if and only if $\sigma$ is less or equal than $\tau$ with respect to the Bruhat–Chevalley order on $W$.

Key words and phrases: Bruhat–Chevalley order, coadjoint orbits, involutions in Weyl groups.

UDC: 512.813.5+519.142.1

Received: 25.12.2011


 English version:
Journal of Mathematical Sciences (New York), 2013, 192:2, 220–231

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024