RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2013 Volume 410, Pages 104–109 (Mi znsl5625)

This article is cited in 1 paper

On conditions of validity of the Poincaré inequality

A. I. Nazarovab, S. V. Poborchia

a St. Petersburg State University, Department of Mathematics and Mechanics, St. Petersburg, Russia
b St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences, St. Petersburg, Russia

Abstract: Let $l=1,2,\dots$, $p,q\ge1$, let $G$ be a domain in $\mathbb R^n$, and let $\mathcal P_l$ be the space of polynomials in $\mathbb R^n$ of degree less than $l$. We show that inclusion $\mathcal P_l\subset L_q(G)$ (and hence $\mathrm{mes}_n (G)<\infty$) is necessary for validity of the generalized Poincaré inequality
$$ \inf\{\|u-P\|_{L_q(G)}\colon P\in\mathcal P_l\}\le\mathrm{const}\,\|\nabla_l u\|_{L_p(G)},\quad u\in L_p^l(G). $$
Thus, this inequality is equivalent to continuity of the embedding $L_p^l(G)\to L_q(G)$.
In the case of critical Sobolev exponent $q=np/(n-lp)$ for $lp<n$ this fact is not true. We give some sufficient conditions for validity of the Poincaré inequality in domains of infinite volume.

Key words and phrases: the Poincaré inequality, embedding theorems.

UDC: 517

Received: 12.12.2012


 English version:
Journal of Mathematical Sciences (New York), 2013, 195:1, 61–63

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025