Abstract:
We study the family of $\alpha$-connections of Amari–Chentsov on the homogeneous space $\mathcal D(M)/\mathcal D_\mu(M)$ of diffeomorphisms modulo volume-preserving diffeomorphims of a compact manifold $M$. We show that in some cases their geodesic equations yield completely integrable Hamiltonian systems.
Key words and phrases:diffeomorphism groups, Fisher–Rao metric, dual connections, integrable systems.