RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2013 Volume 411, Pages 135–147 (Mi znsl5637)

This article is cited in 6 papers

The Kruskal–Katona function, Conway sequence, Takagi curve, and Pascal adic

A. R. Minabutdinov, I. E. Manaev

St. Petersburg State University, Department of Mathematics and Mechanics, St. Petersburg, Russia

Abstract: We study interrelations between the Kruskal–Katona function, Conway sequence, Takagi curve, and Pascal adic. Using the results of the current paper and, in particular, the convergence of the sequence $2a(n)-n$, where $a(n)$ is the Conway sequence, to the family of generalized Takagi curves, we prove a similar result for the Kruskal–Katona function. Moreover, a recursive method of computing the values of the Kruskal–Katona function is suggested.

Key words and phrases: Pascal adic, Kruscal–Katona function, Conway sequence, Takagi curve.

UDC: 517.987.5

Received: 07.03.2013


 English version:
Journal of Mathematical Sciences (New York), 2014, 196:2, 192–198

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024