RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2013 Volume 414, Pages 82–105 (Mi znsl5667)

This article is cited in 3 papers

Kostant–Kumar polynomials and tangent cones to Schubert varieties for involutions in $A_n$, $F_4$ and $G_2$

D. Yu. Eliseev, M. V. Ignat'ev

Samara State University, Samara, Russia

Abstract: Let $G$ be a complex reductive algebraic group and $W$ its Weyl group. We prove that if $W$ are of type $A_n$, $F_4$ or $G_2$ and $w,w'$ are disjoint involutions in $W$, then the corresponding Kostant–Kumar polynomials do not coincide. As a consequence, we deduce that the tangent cones to the Schubert subvarieties $X_w$, $X_{w'}$ of the flag variety of $G$ do not coincide, too.

Key words and phrases: tangent cones, involutions in Weyl groups, Kostant–Kumar polynomials, Schubert varieties.

UDC: 512.74+512.813.4+512.542.74

Received: 16.09.2012


 English version:
Journal of Mathematical Sciences (New York), 2014, 199:3, 289–301

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024