RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2013 Volume 414, Pages 106–112 (Mi znsl5668)

Incompressibility of generic torsors of norm tori

N. A. Karpenko

Université Pierre et Marie Curie, Institut de Mathématiques de Jussieu, Paris, France

Abstract: Let $p$ be a prime integer, $F$ be a field of characteristic not $p$, $T$ the norm torus of a degree $p^n$ extension field of $F$, and $E$$T$-torsor over $F$ such that the degree of each closed point on $E$ is divisible by $p^n$ (a generic $T$-torsor has this property). We prove that $E$ is $p$-incompressible. Moreover, all smooth compactifications of $E$ (including those given by toric varieties) are $p$-incompressible. The main requisites of the proof are: (1) A. Merkurjev's degree formula (requiring the characteristic assumption), generalizing M. Rost's degree formula, and (2) combinatorial construction of a smooth projective fan invariant under an action of a finite group on the ambient lattice due to J.-L. Colliot-Thélène–D. Harari–A. N. Skorobogatov, produced by refinement of J.-L. Brylinski's method with a help of an idea of K. Künnemann.

Key words and phrases: algebraic tori, toric varieties, incompressibility, Chow groups and Steenrod operations.

UDC: 512.743

Received: 28.08.2012

Language: English


 English version:
Journal of Mathematical Sciences (New York), 2014, 199:3, 302–305

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024