RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2013 Volume 414, Pages 156–180 (Mi znsl5672)

Some homology representations for Grassmannians in cross-characteristics

J. Siemons, D. Smith

School of Mathematics, University of East Anglia, Norwich, UK

Abstract: Let $\mathbb F$ be the finite field of $q$ elements and let $\mathcal P(n,q)$ denote the projective space of dimension $n-1$ over $\mathbb F$. We construct a family $H^n_{k,i}$ of combinatorial homology modules associated to $\mathcal P(n,q)$ for coefficient fields of positive characteristic co-prime to $q$. As $F\mathrm{GL}(n,q)$-representations these modules are obtained from the permutation action of $\mathrm{GL}(n,q)$ on the Grassmannians of $\mathbb F^n$. We prove a branching rule for $H^n_{k,i}$ and use this to determine the homology representations completely. Our results include a duality theorem and the characterisation of $H^n_{k,i}$ through the standard irreducibles of $\mathrm{GL}(n,q)$ over $F$.

Key words and phrases: incidence homology in partially ordered sets, finite projective spaces, representations of $\mathrm{GL}(n,q)$ in nondefining characteristic, homology representations.

UDC: 512.664.2

Received: 04.10.2012

Language: English


 English version:
Journal of Mathematical Sciences (New York), 2014, 199:3, 329–342

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025