RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2013 Volume 414, Pages 40–81 (Mi znsl5677)

This article is cited in 7 papers

A compendium of Lie structures on tensor products

P. Zusmanovich

Department of Mathematics, Tallinn University of Technology, Ehitajate tee 5, Tallinn 19086, Estonia

Abstract: We demonstrate how a simple linear-algebraic technique used earlier to compute low-degree cohomology of current Lie algebras, can be utilized to compute other kinds of structures on such Lie algebras, and discuss further generalizations, applications, and related questions. While doing so, we touch upon such seemingly diverse topics as associative algebras of infinite representation type, Hom-Lie structures, Poisson brackets of hydrodynamic type, Novikov algebras, simple Lie algebras in small characteristics, and Koszul dual operads.

Key words and phrases: current Lie algebra, matrix Lie algebra, Kac–Moody algebra, cohomologically nontrivial module, Poisson structure, Hom-Lie structure, Novikov algebra, Koszul dual operads.

UDC: 512.554.3

Received: 24.08.2012

Language: English


 English version:
Journal of Mathematical Sciences (New York), 2014, 199:3, 266–288

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025