RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 1997 Volume 247, Pages 156–165 (Mi znsl568)

This article is cited in 1 paper

Nuclearity of imbedding operators of Sobolev classes into weighted spaces

O. G. Parfenov

Pskov State Pedagogical Institute

Abstract: Let $\Omega$ be an open set in $\mathbf R^m$. Denote by $d_x$ the distance from a point $x$ to the boundary of $\Omega$:
$$ d_x=\inf_{y\in\partial\Omega}|x-y|; $$
if $\Omega=\mathbf R^m$, then $d_x=1+|x|$. Define the class $\overset{\circ}{\mathbf W}{}_{p,\lambda}^l(\Omega)$ as the closure of $\mathbf C^\infty_0(\Omega)$ with respect to the norm
$$ \|f\|_{\overset{\circ}{\mathbf W}{}_{p,\lambda}^l(\Omega)}=\left(\int\limits_\Omega\left(\sum_{|\beta|=l}|D^\beta f|^p d^{-\lambda}_x+|f|^p d^{-pl-\lambda}_x\right)dx\right)^{1/p}; $$
here $l=1,2$; $1\le p<\infty$; $\lambda\in(-\infty,\infty)$. Let $\mu$ be a measure in $\Omega$ and $\mathbf L_q(\mu)$ the Lebesgue space. A criterion for the nuclearity of the imbedding of $\overset{\circ}{\mathbf W}{}_{p,\lambda}^l(\Omega)$ into $\mathbf L_q(\Omega)$ is given for $l>m$.

UDC: 517.51

Received: 04.11.1996


 English version:
Journal of Mathematical Sciences (New York), 2000, 101:3, 3139–3145

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024